[[Ring theory MOC]]
# Krull dimension
Let $R$ be a [[commutative ring]] and $\mathfrak{p} \triangleleft R$ be a [[prime ideal]].
The **height** $\opn{ht} \mathfrak{p}$ of $\mathfrak{p}$ is the supremum of the lengths of strictly increasing sequences of prime ideals culminating in $\mathfrak{p}$
$$
\begin{align*}
\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \dots \subsetneq \mathfrak{p}_{\opn{ht} \mathfrak{p}} = \mathfrak{p}
\end{align*}
$$
and the **Krull dimension** $\dim R$ of $R$ is the supremum of the height of all prime ideals.
## Properties
- [[Krull dimension of an integral domain]]
#
---
#state/tidy | #lang/en | #SemBr